Statistical mechanics of interacting run-and-tumble bacteria.

نویسندگان

  • J Tailleur
  • M E Cates
چکیده

We consider self-propelled particles undergoing run-and-tumble dynamics (as exhibited by E. coli) in one dimension. Building on previous analyses at drift-diffusion level for the one-particle density, we add both interactions and noise, enabling discussion of domain formation by "self-trapping," and other collective phenomena. Mapping onto detailed-balance systems is possible in certain cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Models of Nonequilibrium Bacterial Dynamics

We study a model of self propelled particles exhibiting run-and-tumble dynamics on lattice. This non-Brownian diffusion is characterised by a random walk with a finite persistence length between changes of direction, and is inspired by the motion of bacteria such as E. coli. By defining a class of models with multiple species of particle and transmutation between species we can recreate such dy...

متن کامل

Emergent run-and-tumble behavior in a simple model of Chlamydomonas with intrinsic noise.

Recent experiments on the green alga Chlamydomonas that swims using synchronized beating of a pair of flagella have revealed that it exhibits a run-and-tumble behavior similar to that of bacteria such as E. coli. Using a simple purely hydrodynamic model that incorporates a stroke cycle and an intrinsic Gaussian white noise, we show that a stochastic run-and-tumble behavior could emerge due to t...

متن کامل

Effect of reorientation statistics on torque response of self-propelled particles.

We consider the dynamics of self-propelled particles subject to external torques. Two models for the reorientation of self-propulsion are considered: run-and-tumble particles and active Brownian particles. Using the standard tools of nonequilibrium statistical mechanics we show that the run and tumble particles have a more robust response to torques. This macroscopic signature of the underlying...

متن کامل

Polar features in the flagellar propulsion of E. coli bacteria.

E. coli bacteria swim following a run and tumble pattern. In the run state all flagella join in a single helical bundle that propels the cell body along approximately straight paths. When one or more flagellar motors reverse direction the bundle unwinds and the cell randomizes its orientation. This basic picture represents an idealization of a much more complex dynamical problem. Although it ha...

متن کامل

Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming.

We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely perturb the steady state found without them, but for particles in a harmonic trap such a state is quite changed if the run length is larger than the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 100 21  شماره 

صفحات  -

تاریخ انتشار 2008